Sparse-Graph Codes for Quantum Error Correction

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

More Sparse-Graph Codes for Quantum Error-Correction

We use Cayley graphs to construct several dual-containing codes, all of which have sparse graphs. These codes’ properties are promising compared to other quantum error-correcting codes. This paper builds on the ideas of the earlier paper Sparse-Graph Codes for Quantum ErrorCorrection (quant-ph/0304161), which the reader is encouraged to refer to. To recap: Our aim is to make classical error-cor...

متن کامل

Quantum Error-Correction Codes on Abelian Groups

We prove a general form of bit flip formula for the quantum Fourier transform on finite abelian groups and use it to encode some general CSS codes on these groups.

متن کامل

Quantum Error Correction Codes

This report contains the comprehensive explanation of some most important quantum error correction codes. After the brief corroboration of the quantum mechanical principles that govern any quantum mechanical process, we introduce stabilizer formalism and stabilizer codes for quantum error correction (QEC). As an interesting derivative from classical counterpart we also present Quantum Reed Mull...

متن کامل

Quantum Convolutional Error Correction Codes

Quantum error correction code (QECC) is a succinct way to protect a quantum state from decoherence. The basic idea behind all QECC schemes is that by suitably encoding a quantum state in a larger Hilbert space H , and then later on measuring the wave function into certain subspace C of H , it is possible to detect the kind of errors that have occurred. Finally, one can correct the error by appl...

متن کامل

Algebraic Quantum Error Correction Codes

A systematic and exhaustive method based on the group structure of a unitary Lie algebra is proposed to generate an enormous number of quantum codes. With respect to the algebraic structure, the orthogonality condition, which is the central rule of generating quantum codes, is proved to be fully equivalent to the distinguishability of the elements in this structure. In addition, four types of q...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Information Theory

سال: 2004

ISSN: 0018-9448

DOI: 10.1109/tit.2004.834737